Interleaved equivalence of categories of persistence modules
نویسنده
چکیده
We demonstrate that an equivalence of categories using ε-interleavings as a fundamental component exists between the model of persistence modules as graded modules over a polynomial ring and the model of persistence modules as modules over the total order of the real numbers.
منابع مشابه
Crossed squares, crossed modules over groupoids and cat$^{bf {1-2}}-$groupoids
The aim of this paper is to introduce the notion of cat$^{bf {1}}-$groupoids which are the groupoid version of cat$^{bf {1}}-$groups and to prove the categorical equivalence between crossed modules over groupoids and cat$^{bf {1}}-$groupoids. In section 4 we introduce the notions of crossed squares over groupoids and of cat$^{bf {2}}-$groupoids, and then we show their categories are equivalent....
متن کاملDerived Equivalence and Stable Equivalence of Repetitions
For repetitions (= repetitive \algebras") of algebras of nite global dimension we will show that there exists a triangle equivalence between their bounded derived categories of nitely presented modules ii there exists a triangle equivalence between their stable categories of nitely presented modules.
متن کاملComputing Bottleneck Distance for $2$-D Interval Decomposable Modules
Computation of the interleaving distance between persistence modules is a central task in topological data analysis. For 1-D persistence modules, thanks to the isometry theorem, this can be done by computing the bottleneck distance with known efficient algorithms. The question is open for most n-D persistence modules, n > 1, because of the well recognized complications of the indecomposables. H...
متن کاملEquivalences of Derived Categories for Symmetric Algebras
It is about a decade since Broué made his celebrated conjecture [2] on equivalences of derived categories in block theory: that the module categories of a block algebra A of a finite group algebra and its Brauer correspondent B should have equivalent derived categories if their defect group is abelian. Since then, character-theoretic evidence for the conjecture has accumulated rapidly, but unti...
متن کاملOrthogonal Spectra and S-modules
There are several symmetric monoidal categories of “spectra” that are model categories with homotopy categories equivalent to the stable homotopy category. The most highly developed, and the first to be made rigorous, is the category M = MS of S-modules of [1]. Its objects are quite complicated, but the complication encodes computationally important information. A second such category is the ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1210.7913 شماره
صفحات -
تاریخ انتشار 2012